Probing and Manipulating Fermionic and Bosonic Quantum Gases with Quantum Light
نویسندگان
چکیده
We study the atom-light interaction in the fully quantum regime, with the focus on off-resonant light scattering into a cavity from ultracold atoms trapped in an optical lattice. The detection of photons allows the quantum nondemolition (QND) measurement of quantum correlations of the atomic ensemble, distinguishing between different quantum states. We analyse the entanglement between light and matter and show how it can be exploited for realising multimode macroscopic quantum superpositions, such as Schrödinger cat states, for both bosons and fermions. We provide examples utilising different measurement schemes and study their robustness to decoherence. Finally, we address the regime where the optical lattice potential is a quantum dynamical variable and is modified by the atomic state, leading to novel quantum phases and significantly altering the phase diagram of the atomic system.
منابع مشابه
Ultracold quantum gases in optical lattices
Ultracold bosonic and fermionic quantum gases are versatile and robust systems for probing fundamental condensed-matter physics problems1–12, as well as fi nding applications in quantum optics and quantum information processing13 and understanding atomic and molecular physics14,15. Storing such ultracold quantum gases in artifi cial periodic potentials of light has opened innovative manipulatio...
متن کاملLocalization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice.
We observe a localized phase of ultracold bosonic quantum gases in a 3-dimensional optical lattice induced by a small contribution of fermionic atoms acting as impurities in a Fermi-Bose quantum gas mixture. In particular, we study the dependence of this transition on the fermionic (40)K impurity concentration by a comparison to the corresponding superfluid to Mott-insulator transition in a pur...
متن کاملar X iv : c on d - m at / 9 60 30 29 v 1 5 M ar 1 99 6 Theory of Interacting Quantum Gases
We present a unified picture of the interaction effects in dilute atomic quantum gases. We consider fermionic as well as bosonic gases and, in particular, discuss for both forms of statistics the fundamental differences between a gas with effectively repulsive and a gas with effectively attractive interatomic interactions , i.e. between a gas with either a positive or a negative scattering length.
متن کاملEfficient quantum simulation of fermionic and bosonic models in trapped ions
*Correspondence: [email protected] 1Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, Bilbao, 48080, Spain Full list of author information is available at the end of the article Abstract We analyze the efficiency of quantum simulations of fermionic and bosonic models in trapped ions. In particular, we study the optimal time of entangling gates and th...
متن کاملQuantum-degenerate mixture of fermionic lithium and bosonic rubidium gases.
We report on the observation of sympathetic cooling of a cloud of fermionic 6Li atoms which are thermally coupled to evaporatively cooled bosonic 87Rb. Using this technique we obtain a mixture of quantum-degenerate gases, where the Rb cloud is colder than the critical temperature for Bose-Einstein condensation and the Li cloud is colder than the Fermi temperature. From measurements of the therm...
متن کامل